

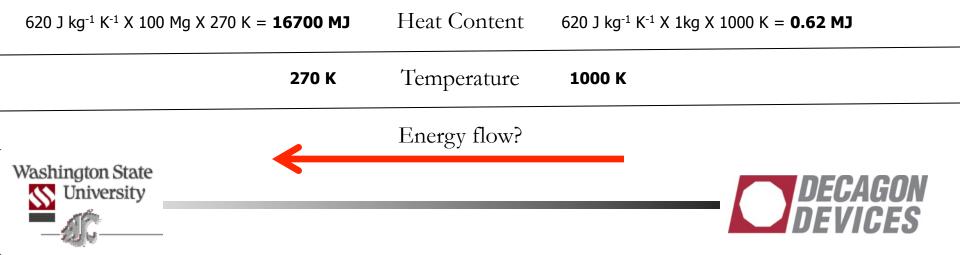
Soil Water Potential Measurement

Doug Cobos, Ph.D. Decagon Devices and Washington State University

Two Variables are Needed to Describe the State of Water

Water content	and	Water potential
Quantity		Quality
Extent		Intensity

Related Measures			
heat content	and	temperature	
charge	and	voltage	



Extensive vs. Intensive

Water Potential Predicts

- Direction and rate of water flow in Soil, Plant, Atmosphere Continuum
- Soil "Field Capacity"
- Soil "Permanent Wilting Point"
- Seed dormancy and germination
- Limits of microbial growth in soil and food

Water Potential

Energy required, per quantity of water, to transport, an infinitesimal quantity of water from the sample to a reference pool of pure, free water

Water Potential: important points

- Energy per unit mass, volume, or weight of water
 - We use units of pressure (Mpa, kPa, m H₂O, bars)
- Differential property
 - A reference must be specified (pure, free water is the reference; its water potential is zero)
- The water potential in soil is almost always less than zero

Washington State University

Water potential is influenced by:

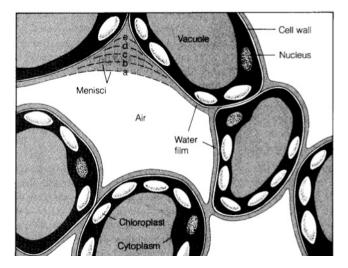
- Binding of water to a surface
- Position of water in a gravitational field
- Solutes in the water
- Pressure on the water (hydrostatic or pneumatic)

Total water potential = sum of components

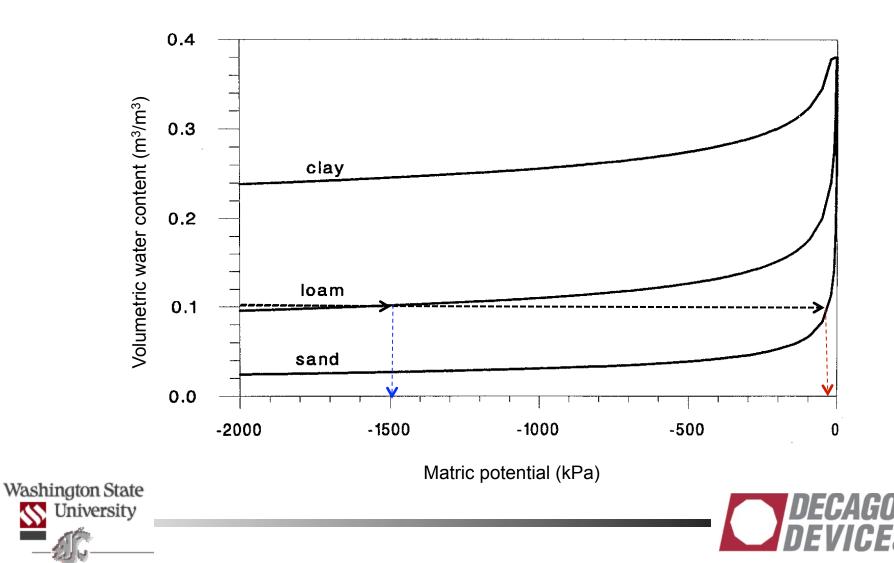
$$\Psi_{\rm T} = \Psi_{\rm m} + \Psi_{\rm g} + \Psi_{\rm o} + \Psi_{\rm p}$$

ψ_T – Total water potential
ψ_m – matric potential - adsorption to surfaces
ψ_g – gravitational potential - position
ψ_o – osmotic potential - solutes
ψ_p – pressure potential - hydrostatic or pneumatic

Matric potential (Ψ_m) adsorptive forces


Hydrogen bonding of water to surfaces

- Always negative
- Most important component in soil
- Highly dependent on surface area of soil

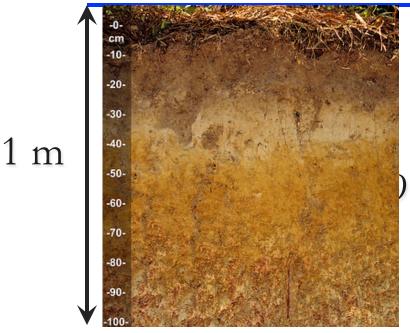

University

- From Jensen and Salisbury, 1984

Soil Water Retention Curves

Gravitational potential (Ψ_g)

10 m


Reference Height

$$\Psi_{g} = g * h * \rho_{water}$$

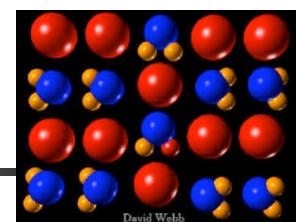
= 9.81 m s⁻² * 10 m * 1 Mg m⁻³
= + 98.1 kPa

Washington State University

Gravitational potential (Ψ_g)

Reference Height (soil surface)

 $0.81 \text{ m s}^{-2} *1 \text{ m} = -9.81 \text{ kPa}$


$$\Psi_{g} = g * h * \rho_{water}$$

= 9.81 m s⁻² * 1 m * 1 Mg m⁻³
= - 9.81 kPa

Washington State

Osmotic potential (Ψ_{o}) - solutes

- Arises from dilution effects of solutes dissolved in water
 - Always negative
 - Only affects system if semi-permeable barrier present that lets water pass but blocks salts
 - Plant roots
 - Plant and animal cells
 - Air-water interface

Osmotic potential (Ψ_{o}) - solutes

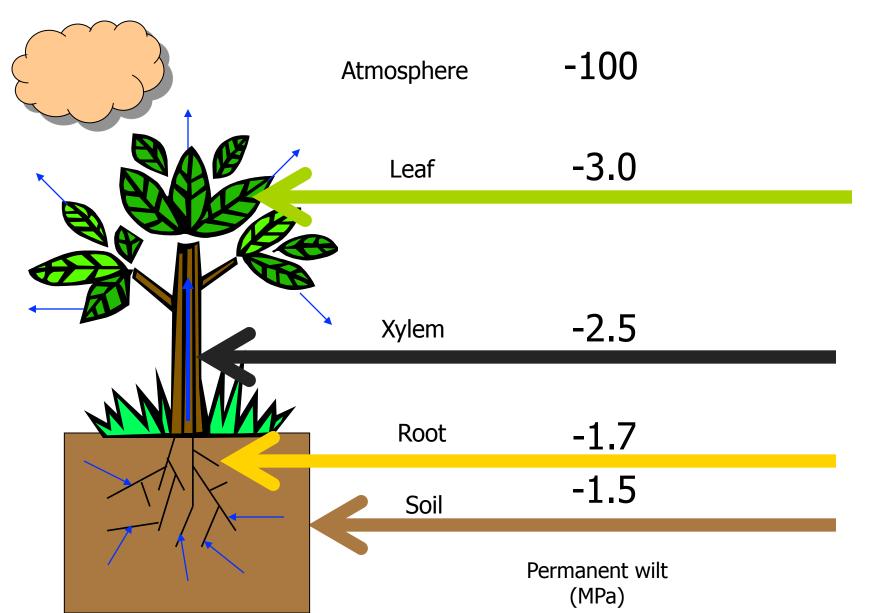
$\Psi_0 = C \phi v RT$

- C = concentration of solute (mol/kg)
- ϕ = osmotic coefficient 0.9 to 1 for most solutes
- ν = number of ions per mol (NaCl = 2, CaCl₂ = 3, sucrose = 1)
- R = gas constant
- $\mathbf{T} = \text{Kelvin temperature}$

Pressure potential (Ψ_p)

Hydrostatic or pneumatic pressure (or vacuum)

- Positive pressure
 - Surface water
 - Groundwater
 - Leaf cells (turgor pressure)
 - Blood pressure in animals
- Negative
 - Plant xylem


Water potential ranges and units

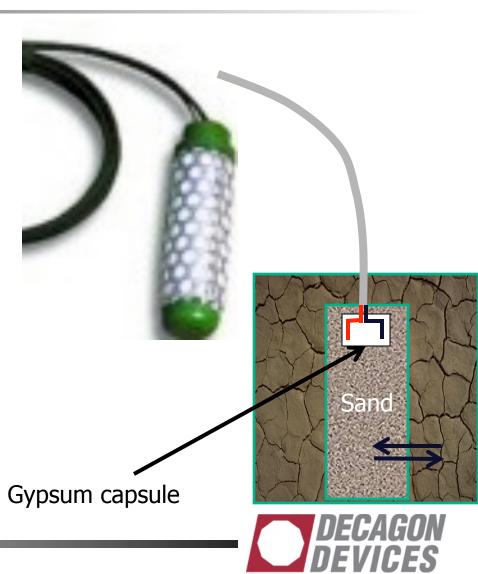
Condition	Water Potential (MPa)	Water Potential (m H ₂ O)	Relative Humidity (h _r)	Freezing Point (°C)	Osmolality (mol/kg)
Pure, free water	0	0	1.00	0	0
Field Capacity	-0.033	-3.4	0.9998	-0.025	0.013
	-0.1	-10.2	0.9992	-0.076	0.041
	-1	-102	0.993	-0.764	0.411
Permanent wilting point	-1.5	-153	0.989	-1.146	0.617
	-10	-1020	0.929	-7.635	4.105
Air dry	-100	-10204	0.478	-76.35	41.049

Water potentials in Soil-Plant-Atmosphere Continuum

Measuring Soil Water Potential

Solid equilibration methods

- Electrical resistance
- Capacitance
- Thermal conductivity
- Liquid equilibration methods
 - Tensiometer
 - Pressure chamber
- Vapor equilibration methods
 - Thermocouple psychrometer
 - Dew point potentiameter

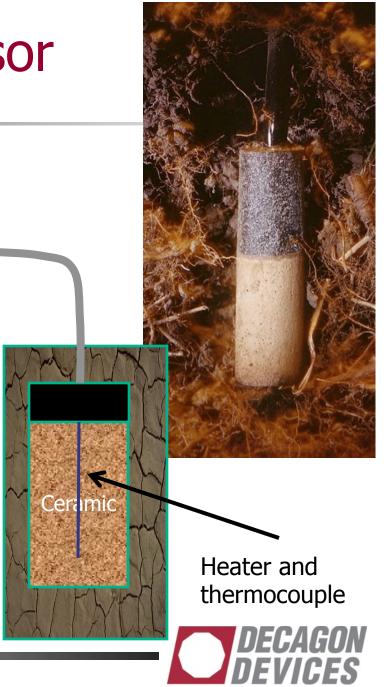


Electrical Resistance Methods for Measuring Water Potential

- Standard matrix equilibrates with soil
- Electrical resistance proportional to water content of matrix
- Inexpensive, but poor stability, accuracy and response
- Sensitive to salts in soil

Washington State

University



Heat Dissipation Sensor

- Robust (ceramic with embedded heater and temperature sensor)
- Large measurement range (-0.01 to -100 MPa)
- Stable (not subject to salts and dissolution
- Requires complex temperature correction
- Requires individual calibration

Washington State

Jniversitv

Capacitance Methods for Measuring Water Potential

- Standard matrix equilibrates with soil
- Water content of matrix is measured by capacitance
- Stable (not subject to salts and dissolution
- No calibration required
- Range -0.01 MPa to air dry (-100 MPa)
- Good accuracy from -0.01 to -1.5 MPa, errors larger in dry end

Washington State University

Liquid Equilibration: Tensiometer

- Equilibrates water under tension with soil water through a porous cup
- Measures tension of water
- Highest accuracy of any sensor in wet range
- Limited to potentials from 0 to -0.09 MPa
- Significant maintenance requirements

Liquid Equilibration: Pressure chamber

- Moist soil placed on saturated porous plate
- Plate and soil sealed in chamber and pressure applied, outflow at atmospheric pressure
- $\Psi_{soil} \approx$ negative of pressure applied
- Common method for moisture characteristic curves

Liquid Equilibration: Pressure chamber

Equilibrium time

Washington State

University

- Hours at wet end
- Months or more at dry end (maybe never)
- Recent work shows that samples at -1.5 Mpa only reached -0.55 Mpa
 - Hydraulic contact between plate and soil sample
 - Low K_{unsat} at low water potential

Gee et. al, 2002. The influence of hydraulic disequilibrium on pressure plate data. Vadose Zone Journal. 1: 172-178.

Water Potential and Relative Humidity

Relative humidity (h_r) and water potential (Ψ) related by the Kelvin equation:

$$\Psi = \frac{RT}{M_w} \ln h_r$$

Washington State

Universitv

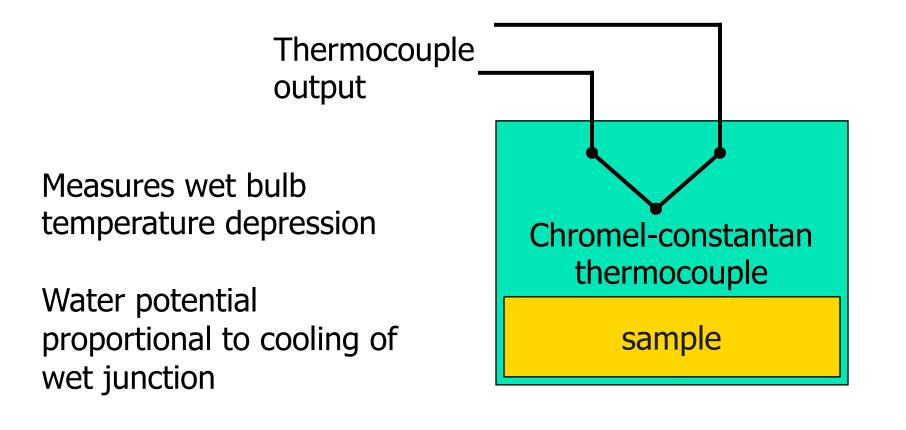
R is universal gas constant M_w is molecular mass of water *T* is temperature

Condition	Water Potential (MPa)	Relative Humidity (h _r)
Pure, free water	0	1.000
Field Capacity	-0.033	0.9998
Permanent wilting point	-1.5	0.989

Vapor Equilibrium Methods

Thermocouple psychrometer

Measure wet bulb temperature depression of head space in equilibrium with sample


Dew point hygrometer

Measure dew point depression of head space in equilibrium with sample

Thermocouple Psychrometer

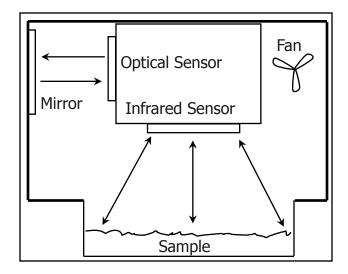
Sample Chamber Psychrometer

- Measures water potential of soils and plants
- Requires 0.001C temperature resolution
- 0 to 6 MPa (1.0 to 0.96 RH) range
- 0.1 MPa accuracy (problems in wet soil)

In Situ Soil Water Potential

Readout

DECAGON DEVICES


Soil Psychrometer

Chilled Mirror Dew Point

- Cool mirror until dew forms
- Detect dew optically
- Measure mirror temperature
- Measure sample temperature with IR thermometer
- Water potential is approximately linearly related to Ts - Td

Washington State University

WP4 Dew Point Potentiameter

Range is 0 to -300 MPa

Accuracy is +/-0.05 MPa
Excellent in dry soil
Problems in wet soil

Read time is 5 minutes or less

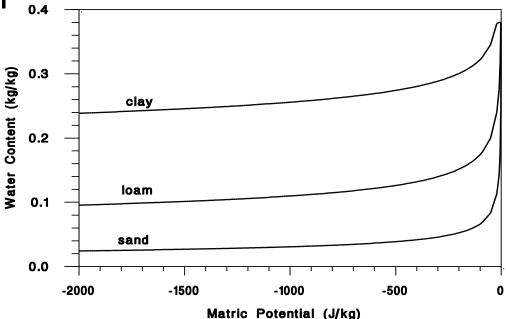
Some applications of soil water potential

Soil Moisture Characteristic
Plant Available Water
Surface Area
Soil Swelling

Hydropedology

Water flow and contaminant transport

Irrigation management

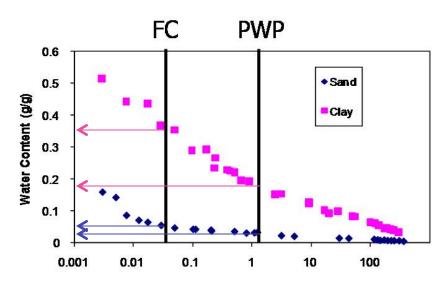


Soil Moisture Characteristic

- Relates water content to water potential in a soil
- Different for each soil
- Used to determine
 - plant available water
 - surface area
 - soil swelling

Washington State

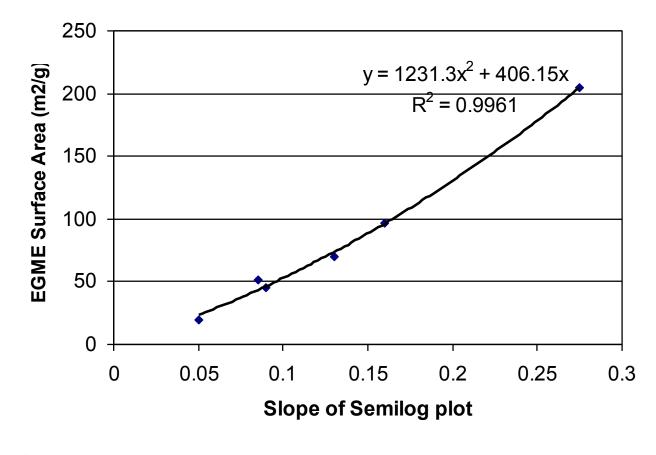
Iniversity


Plant Available Water

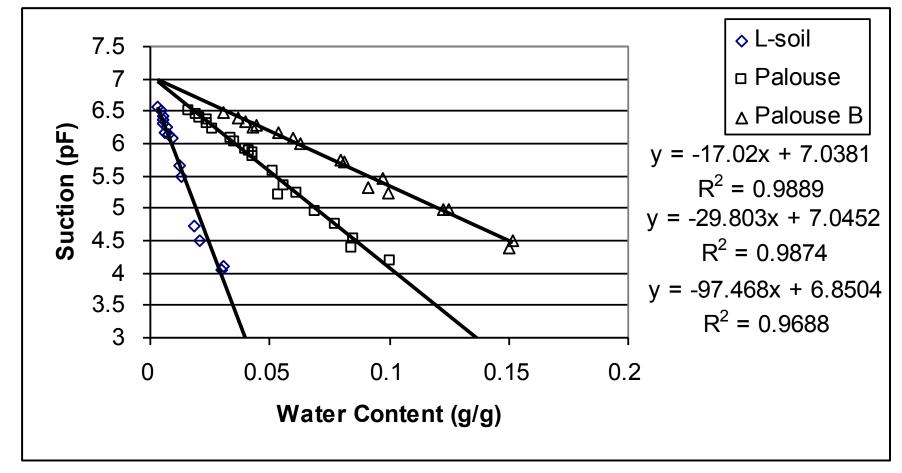
- Two measurement methods needed for full range
 - Hyprop, tensiometer, pressure plate in wet end
 - Dew point hygrometer or thermocouple psychrometer in dry end
- Field capacity (-0.033 Mpa)

Washington State

Jniversitv


- Upper end of plant available water
- Permanent wilting point (-1.5 Mpa)
 - Lower end of plant available water
 - Plants begin water stress much lower

Water Potential (-MPa)


Surface Area from a Moisture Characteristic

Washington State University

pF Plot to get Soil Swelling

Expansive Soil Classification from McKeen(1992)

Class	Slope	Expansion
Ι	> -6	special case
II	-6 to -10	high
III	-10 to -13	medium
IV	-13 to -20	low
V	< -20	non-expansive

Hydropedology

- Requirements:
 - Year around monitoring; wet and dry
 - Potentials from saturation to air dry

Possible solutions:

- Soil psychrometers (problems with temperature sensitivity)
- Capacitance matric potential sensor (limited to -0.5 MPa on dry end)
- Heat dissipation sensors (wide range, need individual calibration)

Water Flow and Contaminant Transport

Requirements:

- Accurate potentials and gradients during recharge (wet conditions)
- Continuous monitoring

Possible solutions:

Washington State

Jniversitv

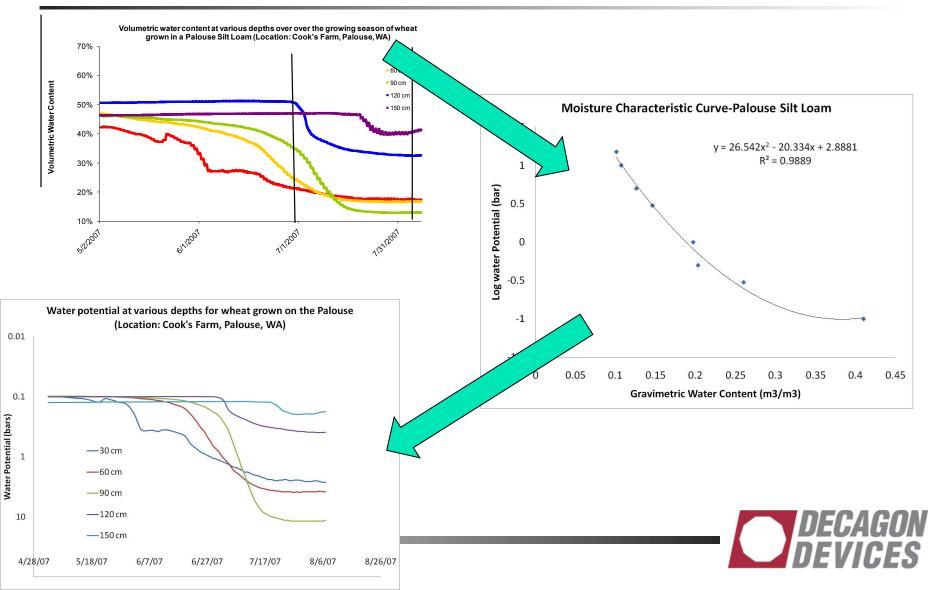
- Capacitance matric potential sensor
- Pressure transducer tensiometer (limited to -0.09 MPa on dry end)

Irrigation Management

- Requirements:
 - Continuous during growing season
 - Range 0 to -0.1 Mpa

Possible solutions:

- Tensiometer (soil may get too dry)
- Electrical resistance (poor accuracy)
- Heat dissipation or capacitance


Measuring water content to get water potential

- Requires moisture characteristic curve for converting field measurements from θ to ψ
- Conventional wisdom: time consuming
 - Most moisture release curve have been done on pressure plates
 - Long equilibrium times, labor intensive
- New techniques
 - Fast (<24 hours)</p>
 - Automated

Bridging the gap

Summary

- Knowledge of water potential is important for
 - Predicting direction of water flow
 - Estimating plant available water
 - Assessing water status of living organisms (plants and microbes)

Summary

Water potential is measured by equilibrating a solid, liquid, or gas phase with soil water

Solid phase sensors

- Heat dissipation
- Capacitance
- Granular matrix
- Liquid equilibrium
 - Tensiometers
 - Pressure plates

Washington State University

Summary

Vapor equilibration

Thermocouple psychrometers

- Dew point potentiameters
- No ideal water potential measurement solution exists
 - Maintenance and stability
 - Accuracy and calibration
 - Ease of use
 - Range of operation

