

we measure the world®

Methods for Measuring Hydraulic Conductivity

- Hydraulic Conductivity
 - Definition
 - Importance
- Methods
 - Saturated Hydraulic Conductivity
 - Unsaturated Hydraulic Conductivity
- Applications

OUTLINE

we measure the world®

Definition

• What is Hydraulic Conductivity:

 Ability of a porous medium to transmit water under saturated or nearly saturated conditions

- Dependent on:
 - Size distribution, roughness, tortuosity, shape and degree of interconnection of water-conducting pores

Hydraulic Conductivity Curve

Importance

- Why do we care?
 - Hydrology Modeling
 - Agricultural decisions
 - Landfill Cover efficacy
 - Geotechnical design

Methods – Saturated Hydraulic Conductivity (K_s or K_{fs})

- Laboratory (K_s)
 - Flow Cells
 - KSAT
- Field (K_{fs})
 - Ring Infiltrometers
 - Borehole Permeameters
 - Pressure Infiltrometers

Flow Cells

- Constant & Falling head technique
- Measurement of Soil Cores in Lab
- Undisturbed or Disturbed samples

Flow Cells – How they work

Outflow

- Water Passes through Saturated Soil Core
- Steady State flow rate is measured
- Calculations correct for pressure head

Flow Cells – Pros & Cons

Advantages

- Simple calculations
- No corrections for 3dimensional flow
- Separate different horizons
- Multiple samples can be stored
- Fairly easy setup

Disadvantages

- Expansive soils are confined
- Values may differ from field methods
- Requires additional equipment to automate
- Dedicated lab space
- Small surface area

UMS-KSat

- Same concept as flow cells
- Automation built into device
- Falling & Constant Head technique

KSat – How it works

Ring Infiltrometers

- Thin-walled open ended cylinders
- Various Cylinder Arrangements
- Constant- and fallinghead techniques

Single-Ring Infiltrometer

- Single measuring cylinder
- Diameters range from 10 to 50 cm
- Corrections are made for 3-dimensional flow

Double-Ring Infiltrometer

Double or Concentric Ring Infiltrometer (Cross Section)

- Single measuring cylinder placed inside larger buffer cylinder
- Intention of buffer cylinder is to prevent flow-divergence from measuring cylinder

Ring Infiltrometer – Pros & Cons

Advantages

- Larger rings encompass more spatial variability
- Results represent field conditions

Disadvantages

- Time consuming
- Requires estimation of soil properties (α) to correct for 3-dimensional flow
- Buffer cylinder often is not effective

Pressure Infiltrometer

- Similar to single-ring infiltrometer
- Analysis on Single or multiple heads
- Can also determine macroscopic capillary length parameter (α)

Pressure Infiltrometer – Pros & Cons

Advantages

- Measurement of (α) improves analysis of K_{fs}
- Can also be used to determine sorptivity and matric flux potential

Disadvantages

- More complex measurement apparatus
- Multiple-head technique requires more time

Borehole Permeameters

- Constant head method
- Several permeameter designs
- Single and Multiple Head analysis
- Can also determine $\boldsymbol{\alpha}$

Borehole Permeameters

- Well is augured to desired depth
- Permeameter is mounted over the well
- Marriotte bubbler maintains constant head

Borehole – Pros & Cons

Advantages

- Measurement of (α) improves analysis of K_{fs}
- Analysis of different soil layers
- Can also be used to determine sorptivity and matric flux potential

Disadvantages

- Small surface area
- Long measurement times
- Potential smearing and siltation
- No visibility in measurement site

Methods – Unsaturated Hydraulic Conductivity (K(y))

- Laboratory
 - Tempe Cells
 - Evaporation Method
- Field
 - Tension Infiltrometers

Flow Cells

- Can also be used for measuring $\textbf{K}(\psi)$
- Simultaneous water transmission & retention properties
- Requires tensiometers

Flow Cells – How they work

- Steady flow rate into column
- Flow rate maintained until both tensiometers read same suction
- Flow rate is then increased

Flow Cells – Pros & Cons

Advantages

- Simultaneous water transmission & retention properties
- Estimation of saturated and unsaturated flow parameters on same soil column

Disadvantages

- Requires a method of maintaining a constant flow
- Complex operation

Evaporation Method

- First Introduced by Wind (1968)
- Saturated Soil Core allowed to evaporate
- Constant evaporation
 rate
- Simultaneous measurements of matric head

- Simplified Wind/Schindler Evaporation Method
- Two Tensiometers at different Heights
- Calculated Using Inversion of Darcy-Equation

 $K^{i}(\overline{\overline{h}}^{i}) = -\frac{q^{i}}{\Delta h^{i} / \Delta z + 1}.$

HyProp – Pros & Cons

Advantages

- Simultaneous water transmission & retention properties
- Automated measurement
- Good measurement
 resolution

Disadvantages

- Unreliable K(ψ) data near saturation
- Learning curve
- Only Desorption
 Characteristics

Tension Infiltrometers

- Infiltration under imposed suctions
- Three dimensional infiltration analysis
- Also used for determining repellency

Tension Infiltrometers

- Porous plate is placed on the soil
- Suction is controlled by bubble tower
- Analysis using transient and steady-state methods

Tension Infiltrometer – Pros & Cons

Advantages

- Controlled suction
- Larger disks account for more spatial variability
- Estimation of sorptivity and repellency

Disadvantages

- Steady-state methods are time consuming
- Requires estimation of soil properties to correct for 3dimensional flow

DualHead Infiltrometer

- Automated Ring Infiltrometer
- Similar to Pressure Infiltrometer
- Multiple Ponded head analysis

DUAL-HEAD INFILTROMETER

- Constant Water Level
- Different pressure heads controlled by air pressure

Flux (cm/s)

- Constant Water Level
- Different pressure heads controlled by air pressure

Pressure (cm)

- Constant Water Level
- Different pressure heads controlled by air pressure

Flux (cm/s)

- Constant Water Level
- Different pressure heads controlled by air pressure
- Improved estimates of K_{fs}
- α directly measured

Land-use effects

• Comparing the effects of Landscape & Land-use on hydraulic properties of the same soil type

Tall grass native prairie Improved pasture—grazed

Where to measure?

Land-use effects

• Triplicate measurements made using Double-Ring Infiltrometers

Plant Available Water

- How do hydraulic properties of soil-less substrates effects plant available water
- Many soil-less substrates are gap-graded

Plant Available Water

• Can Hydraulic Conductivity affect plant available water?

Plant Available Water

QUESTIONS?

we measure the world®