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Using Thermal Properties Measurements to Predict Food Temperature During Processing 
 
The earliest processes applied to food by 
humans involved the heating and cooling of 
the food. These processes are important for 
almost all aspects of food preparation, and 
play a key role in 
determining food safety. 
The thermal properties of 
a food product 
determines its ability to 
transfer and store heat. 
For a given thermal 
process, the spatial and 
temporal distribution of temperature in the 
food is determined by the thermal properties 
of the product. 
 
The thermal properties are thermal 
conductivity, k (W m-1 C-1), heat capacity or 
specific heat, Cp (J m-3 C-1), and thermal 
diffusivity, �� (m2 s-1). The thermal 
conductivity is a measure of the heat flux 
density (Joules of heat per square meter per 
second) when the temperature gradient is 
one degree per meter. The specific heat is 
the number of joules of heat required to raise 
the temperature of one cubic meter of the 
substance by one degree. The thermal 
diffusivity is the ratio of thermal 
conductivity to specific heat and is a 
measure of the rate at which thermal 
disturbances propagate in the medium.  
 
Thermal properties depend on the 
composition of the food. Table 1 shows 
thermal properties for air, water, and organic 
material. Air has a very low thermal 
conductivity and specific heat, while water 
has much higher values. The values for 
organic constituents are intermediate 
between air and water. It is therefore 
possible to manipulate the thermal 
properties of foods through changing the 
water and air content of the food, and this 

manipulation will influence the heating and 
cooling properties. 
 
Table 1. Thermal properties 

 
 
Modeling Spatial and Temporal 
Variations of Temperature 
An example of an application of thermal 
properties measurements is the modeling of 
the temperature inside a hamburger patty as 
it cooks. The temperature changes in space 
and time are modeled using Fourier’s heat 
laws. Fourier’s first law states that the heat 
flux density for steady heat flow is directly 
proportional to the temperature gradient. In 
symbols, this is 
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where H is the heat flux density, and dT/dz 
is the temperature gradient. When the heat 
flow changes with time, as it does in the 
hamburger, we need to combine eq. 1 with 
the continuity equation to model the 
temperature 
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The left hand side of eq. 2 represents the rate 
of heat storage at a point in the hamburger, 
and the right hand side represents the heat 

Component 
 

Density 
Mg m-3 

Specific Heat 
J m-3 C-1 

Conductivity 
W m-1 C-1 

Water 1.00 4.2 X 106 0.57 

Organic Matter 0.0012 1.2 X 103 0.025 
Air (20 C) 1.30 2.5 X 106 0.25 
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flux divergence, or rate of change of heat 
flux density with depth. Combining eqs. 1 
and 2 gives Fourier’s second heat law: 
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If thermal conductivity is constant with 
depth, k can be taken outside the derivative. 
We can also divide both sides by Cp to 
obtain a more familiar form of Fourier’s 
second law: 
 

 2

2

z
T

t
T

∂
∂=

∂
∂ α    (4) 

 
where �= k/Cp is the thermal diffusivity. 
According to eq. 4, the locations in the 
hamburger where temperature will change 
fastest with time is the location where the 
change with depth of the temperature 
gradient is largest.  
 
Equation 4 can be solved to determine the 
temperature within the meat at any location 
and time if we know: 1) the temperature of 
the griddle, 2) the initial temperature of the 
meat, and 3) the thermal properties of the 
meat. Solutions to this kind of problem are 
complex, mathematically, but are standard 
fare in engineering heat transfer. Often they 
are done using computers and numerical 
methods. The important point to make here 
is that the thermal properties must be known 
in order to solve the problem. 
Application Note 
Determining the Thermal Properties of 
Foods 
As previously mentioned, the thermal 
properties of food products depend strongly 
on the composition of the product. If the 
composition of the product is known, and 
specific heat data for each of the 
components are available, the specific heat 

of the product can be computed. It is just the 
sum of the volume fractions of each of the 
components multiplied by their respective 
specific heats. The thermal conductivity of a 
mixture of components is not easily 
obtained, since it is determined not only by 
the thermal conductivity and volume 
fraction of the components, but also by how 
they are mixed. In practice it is often easiest 
to just measure the thermal properties. The 
measurement is made by applying a known 
amount of heat to the material in a specified 
configuration, and using Fourier’s laws in an 
inverse mode to find the thermal properties. 
 
Thermal properties measured with a dual 
probe technique 
A method has been developed which allows 
measurement of all three thermal properties 
in a single measurement. This is the method 
used by Decagon’s ThermoLink®. Two 
stainless steel needles are mounted 6 mm 
apart. A heating wire is in one needle and a 
thermocouple in the other. The two needles 
are placed in the sample and the heater is 
pulsed for 8 seconds. The temperature rise 
above ambient, and total power dissipated is 
monitored by a microcontroller. 
 
Campbell et al. (1991) gives the equation for 
the temperature rise at some distance, r, 
from a pulsed line heat source as 
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where r is the distance between the line heat 
source and the temperature sensor, �T is the 
temperature rise measured by the 
temperature sensor, q is the power dissipated 
by the heater, k is the thermal conductivity, 
and �� �is the thermal diffusivity. Equation 5 
is used with a mathematical inverse method 
to determine the thermal conductivity and 
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thermal diffusivity. Once conductivity and 
diffusivity are known, then heat capacity can 
be found from 
 

α
kC p =    (6) 

 
Thermal conductivity measured with a 
single probe 
Another method for measuring thermal 
conductivity is somewhat similar. A 
single needle is heated and its rate of 
temperature rise is measured. 
Shiozawa and Campbell (1990) give 
an equation for converting this rate 
of temperature rise to thermal 
conductivity. The relationship 
between temperature of the heated needle 
and time is 
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where �T is the temperature rise, q (W/m) is 
the rate of heat input to the needle (note that 
it is not the total heat input as it was with the 
dual needle sensor), k is the thermal 
conductivity, and to is a time offset. The 
temperature rises quickly when heat is first 
applied, and then much more slowly with 
longer heating times. The needle is usually 

heated for about 60 s. Table 2 shows some 
comparisons of thermal conductivity 
measured with single and dual needle 
probes, and measurements of thermal 
properties made with the dual probe sensor. 
 
 
Table 2. Comparison of Dual Needle to 
Single Needle probes  

DNHP - Dual needle heat pulse probe 
SN - Single needle thermal conductivity      
probe 
mean value of ten replicate measurements 
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  DNHP 
k (W m-1 C-1) 

SN 
k (W m-1 C-1) 

Apple - Red 
- Golden 

0.42 ± 0.023 
0.45 ± 0.020 

 

0.43 ± 0.044 
0.42 ± 0.044 

Beef  0.46 ± 0.014 0.50 ± 0.018 
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